
Lecture 3 - Pull!
A Puzzle...

Recall from last time that we computed the stability criterion 1
2 μ

≤ Tan[θ] for a leaning ladder (of length d):

◼ We computed the stability using the base of the ladder as the torque base point (below, left)

◼ Redo the problem using the much slicker choice for the torque base point at the intersection of the N2 and m g 
forces (below, right)
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Solution

In total there are three forces acting on the ladder: a normal force at the top end, gravity in the middle, and a third 

force -F x

+ N1 y

 at the base of the ladder. Denote the origin (0, 0) as the bottom-left corner. Then extending lines 

through the normal force at the top of the ladder and gravity’s force in the middle yields an intersection point at 


d

2
Cos[θ], d Sin[θ]. What if we put our origin for the calculation of torque here? Because the top normal and 

gravity pass through this point, their contribution to the overall torque equals 0. And since there is only one other 

force acting on the ladder (-F x

+ N1 y

), and the net torque must equal 0, then -F x

+ N1 y

 must pass through this 

point as well. 

Using similar triangles, this implies that
N1

F
=

d Sin[θ]
d

2
Cos[θ]

= 2 Tan[θ] (1)

so that the ladder will not slide provided

F ≤ μ N1 (2)
1
μ
≤

N1

F (3)
1
μ
≤ 2 Tan[θ] (4)
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1
2 μ

≤ Tan[θ] (5)

in agreement with our previous answer! □

Supplementary Section: Projectile Motion

1D Projectile Motion

Having covered some serious ground in statics, it is now time to allow motion into our problems. 

Example

Suppose you hold your phone d meters above the ground and drop it. How long will it take the phone to hit the 

ground and what will its velocity be the instant it hits the ground?

Solution

The only acceleration acting on your phone is straight down towards the earth. You have seen this type of problem 

both in class and in the course textbook, so let’s take the opportunity to do something weird - we will set our 

positive axis of motion to point down towards the Earth, so that your phone will have acceleration a = +g. We will 

find that you have to be careful when you define "down as up" in this manner.

Using a =
ⅆv

ⅆt
,

ⅆv

ⅆt
= g (6)

Integrating both sides, 

v = g t+C1 (7)

We will define t = 0 as the time when you release the phone, at which point v = 0. Therefore C1 = 0,

v = g t (8)

Using v = ⅆr

ⅆt
,

ⅆr

ⅆt
= g t (9)

Integrating both sides, 

r =
1
2

g t2 +C2 (10)

At t = 0, the phone is at a height r = -d (remember, r = 0 is the boundary of the Earth and we assumed that the 

direction towards the Earth is positive (this weirdness is why people always set the direction away from Earth to 

be positive!)) which allows us to solve for C = -d,

r =
1
2

g t2 - d (11)

We can now solve for when the object hits the ground (r = 0), which yields

t = ±
2 d

g

1/2

(12)

The positive solution is the physical one (can you think of what the negative solution represents?). The graph 

below plots the position r, velocity v, and the acceleration a for the phone assuming d = 2 m and g = 9.8 m

s2 . 
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The time to impact the ground would be timpact = 0.64 s, and the velocity of your phone would be 

vimpact = g timpact = 6.3 m

s
. So make sure that your phone's case is rated to handle this speed before the next time you 

try balancing it on your head to check your posture. □

2D Projectile Motion

Your pure-vanilla basic 2D projectile motion problem is extremely similar to the 1D case. Indeed, if you have the 

projectile shooting straight upwards, then you regain the 1D problem.

Example

A cannon fires a projectile from (0, 0) at an angle θ from the ground with speed v0. What does the projectile’s 

motion in the air look like?

Solution

We orient the y-axis straight up (away from the Earth) and the x-axis in the direction orthogonal to it in the direc-

tion of the projectile’s motion. We set t = 0 at the moment the cannon fires. We denote the components of velocity 

by

v

= vx[t] x


+ vy[t] y

 (13)

Right after the canon fires, we have the initial conditions

vx[0] = v0 Cos[θ] (14)
vy[0] = v0 Sin[θ] (15)

The only acceleration acting on the projectile is gravitational acceleration a = -g y
. Thus, by Newton’s 1st Law, 

throughout the projectile’s motion vx[t] remains the same, 

vx[t] = vx[0] = v0 Cos[θ] (16)

In the y-direction, we use ⅆvy

ⅆt
= a = -g,

ⅆvy[t]

ⅆt
= -g (17)

(which is exactly the same as a 1D projectile motion problem). Integrating, 

vy[t] = -g t+C (18)

Applying Equation (15) shows that C = v0 Sin[θ],

vy[t] = -g t+ v0 Sin[θ] (19)

Denoting rx[t] and ry[t] as the horizontal and vertical distances traveled with rx[0] = 0, ry[0] = 0, ⅆrx[t]

ⅆt
= vx[t], and 

ⅆry[t]

ⅆt
= vy[t], 
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ⅆrx[t]

ⅆt
= vx[t] = v0 Cos[θ] (20)

ⅆry[t]

ⅆt
= vy[t] = -g t+ v0 Sin[θ] (21)

Integrating, 

rx[t] = v0 t Cos[θ] +C1 (22)
ry[t] = -

1
2

g t2 + v0 t Sin[θ] +C2 (23)

Using rx[0] = 0 and ry[0] = 0 allows us to solve for the two constants C1 = 0 and C2 = 0,

rx[t] = v0 t Cos[θ] (24)
ry[t] = -

1
2

g t2 + v0 t Sin[θ] (25)

We can use Mathematica to plot this result by varying t
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2D Projectile Motion

At t = 0, the projectile is launched from the ground and ry[t] = 0. The projectile then flies high into the air because 

vy[t] starts off very large, but as time progresses vy[t] decreases (linearly with time) until it hits 0 at the top of the 

flight and then becomes negative, bringing the projectile back to Earth.

The projectile’s motion is parabolic, and this can be confirmed by solving for t as a function of rx[t] in Equation 

(24),

t =
rx[t]

v0 Cos[θ] (26)

and then substituting this result into ry[t] in Equation (25), 

ry[t] = -
1
2

g 
rx[t]

v0 Cos[θ]

2
+ v 

rx[t]

v0 Cos[θ]
 Sin[θ] = -

g

2 v0
2 Cos[θ]2

rx
2[t] + Tan[θ] rx[t] (27)

which is indeed a parabola. We can now easily find the peak height of the projectile’s flight by solving Equation 

(19) for the time at which vy[t] = 0,

tmax height =
v0 Sin[θ]

g (28)

and then substituting this time back into Equation (27) for ry[t] to obtain

ry,max height =
v0

2 Sin[θ]2

2 g
=

vy[0]2

2 g
(29)

We can also find out how far the projectile travels before it splatters all over the ground by solving Equation (27) 

for its non-zero root when ry[t] = 0,

rx,max distance =
2 v0

2 Cos[θ] Sin[θ]
g

=
2 vx[0] vy[0]

g (30)
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The following graph plots the y-position (ry) and velocity (vy[t]) of the projectile during its flight. The green 

arrows show the full velocity vector,

vx[t] = v0 Cos[θ] (31)
vy[t] = -g t+ v0 Sin[θ] (32)
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Give yourself a pat on the back. You are now a 2D projectile master! □

Advanced Section: The Cupcake Cannons

Pulleys

Last time, we covered gravity, friction, and the normal force in several examples. This time, we will focus on the 

last important force: tension. These and other great problems come from David Morin’s book Introduction to 

Classical Mechanics with Problems and Solutions.

A Spool

Example

A spool has an inner radius r around which string is wound and an outer radius R on which it can roll. The string is 

pulled at an angle θ with the horizontal with tension T. Assume that μ is large enough so that the spool does not 

slip. What value must θ be to prevent the spool from moving?
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θ

r

R T

Solution

All four types of forces apply in this problem: gravity, a normal force, tension, and friction!

θ
r

R T

N

mg
Ffriction

Balancing the horizontal and vertical forces,

T Cos[θ] = Ffriction (53)
N + T Sin[θ] = m g (54)

Balancing torques about the center of the spool (so that gravity and the normal force don’t contribute), 

r T = R Ffriction (55)

Combining Equations (53) and (55), we find

Cos[θ] = r

R (56)

Often when you find such simple solutions in physics, it indicates that there is a quick and simple method to 

determine the answer. In this case, a much more clever choice of the torque base point is at the base of the spool, 

in which case gravity, the normal force, and the frictional force have zero torque. Therefore, the tension force (the 

only force remaining) must also pass through the base point of the spool in order for it to not contribute any torque.

θθ
r

R

T
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Extending the line of the T force and using simple geometry, we obtain Cos[θ] = r

R
. □ 

A Pulley

Example

A massless, frictionless pulley has two masses m1 and m2 hanging on it by a massless string. Find the acceleration 

of the masses and the tension in the string.

m1 m2

Solution

The tension T pulls up on both masses. Defining upwards as positive, the accelerations a1 and a2 of the masses 

satisfies

T -m1 g = m1 a1 (57)
T -m2 g = m2 a2 (58)

m2g

T

m1g

T

The rope has fixed length, implying that when mass 1 moves upwards by y1 then mass 2 moves downwards by 

y2 = -y1. Taking two time derivatives, 

a2 = -a1 (59)

We can solve this system for T, a1, and a2 to obtain

T =
2 m1 m2

m1+m2
g (60)

a1 =
m2-m1

m2+m1
g (61)
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a2 = -
m2-m1

m2+m1
g (62)

Let’s check some special cases:

Case 1: m1 = m2

a1 = a2 = 0 and T = m1 g as expected.

Case 2: m1 ≪ m2

a1 = -a2 = g since m2 is essentially in free fall. The tension T = 2 m1 g is exactly what is needed to accelerate m1 

upwards with acceleration g.

Case 3: m1 ≫ m2

The reverse of Case 2. □ 

Two Pulleys

Example

Masses m1 and m2 are hung on massless (and therefore frictionless) pulleys and strings. What is the tension in the 

string and the acceleration of the masses? 

m1

m2

Solution

Denote the tension in the rope holding m1 by T (recall that this is the tension throughout the entire rope because 

there is no friction). Let’s isolate the forces acting upon the right pulley: the same rope holding up m1 wraps 

around this pulley and pulls up on it with tension T from both sides; additionally there is a tension T

 due to the 

rope holding up m2.
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T


T TT

Because the pulley is massless, the sum of forces on it must sum to zero (otherwise it would undergo infinite 

acceleration). Therefore, T

= 2 T is required to balance the forces on this right pulley. Using ∑F = m a on each 

mass, 

T -m1 g = m1 a1 (63)
2 T -m2 g = m2 a2 (64)

m2g

2T

m1g

T

where in the second equation of motion we have used the fact that there is tension on either side of the right 

pulley, and both of these sides pull up on the pulley with tension T. The above two equations are not enough to 

solve for our three unknowns (a1, a2, and T). What is the third equation?

The string has a fixed length! Thus, if m1 were to rise up by an amount y1, then m2 would have to sink by an 

amount y2 = -
1
2

y1. Taking two time derivatives of this equation yields

a2 = -
1
2

a1 (65)
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y1

m1

m2

y1

We can now solve this system of equations (possibly using Mathematica) to obtain

T =
3 m1 m2

4 m1+m2
g (66)

a1 =
2 m2-4 m1

4 m1+m2
g (67)

a2 =
2 m1-m2

4 m1+m2
g (68)

This result begs for us to check limiting cases (that is when you truly start to understand physics):

Case 1: m2 = 2 m1

a1 = a2 = 0 and T = m1 g. Static equilibrium is reached if m2 is twice the mass of m1 because it has twice as many 

ropes pulling up on it.

Case 2: m1 ≪ m2

a1 = 2 g, a2 = -g, and T = 3 m1 g. In this case, m2 is essentially in free fall, and consequently it pulls up m1 with 

acceleration 2 g because of the fixed rope length.

Case 3: m1 ≫ m2

a1 = -g, a2 =
1
2

g, and T =
3
4

m2 g. In this case, m1 is essentially in free fall and m2 just comes along for the ride. □ 

Advanced Section: Pulley Bonanza!

This problem will blow your mind!

Example

Consider the infinite pulley system below. All the masses m are held fixed and simultaneously released. What is 

the acceleration of the top mass?
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Solution

If the strength of gravity were increased from g to λ g, then the tension must change from T to λ T. Why? Because 

the only units in this problem are from the mass m (kg) and gravity g ( m

s2 ). The only way to make units of tension 

(which is the unit of force ( kg·m
s2 )) is by multiplying m g, and hence T ∝ m g. So if we changed g →λ g, then 

T →λ T. Said another way, the ratio T

g
 will be constant regardless of the particular value of g.

Call the tension in the string holding the top mass T. Because the second pulley is massless, the net force on it 

must be zero, and therefore the tension in the second rope from the top must be T

2
. 

m

m

m

T

T/2

Define a1 as upwards acceleration of the top mass at time zero. Then a1 also equals the downwards acceleration of 

the second pulley (by conservation of string length). 

Consider the subsystem consisting of all pulleys except for the top one. This system is identical to our original 

system, except that gravity in this system is effectively g - a1 (this is the feeling of reduced gravity when an 

elevator starts to descend). Therefore, we know that the T

g
 in the original system must equal T/2

g-a1
 in the subsystem. 
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Solving T

g
=

T/2
g-a1

 yields a1 =
1
2

g. Therefore, the top mass accelerates upwards at 1
2

g. □ 

Another way to solve this problem is to consider a system of N pulleys where a mass m replaces the N + 1th pulley, 

and then take the limit as N →∞. I encourage you to try this rather challenging problem out for yourself!

Advanced Section: Pulleys with Friction

Mathematica Initialization
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